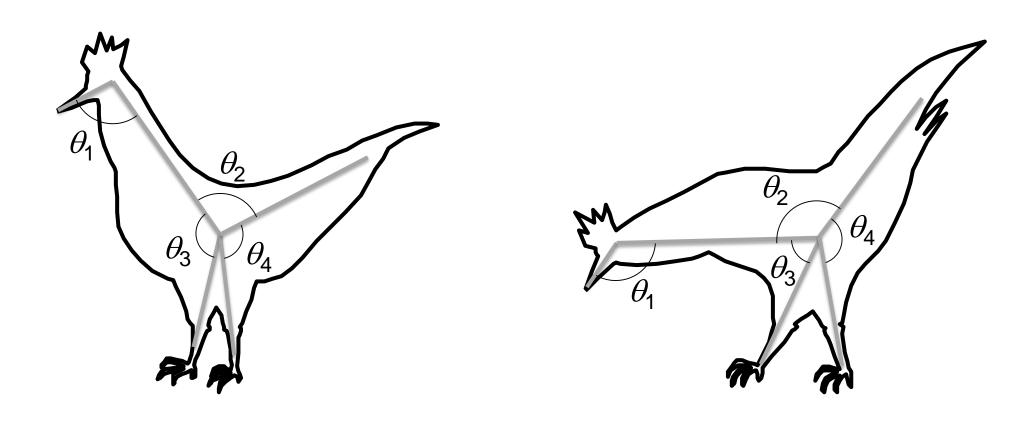
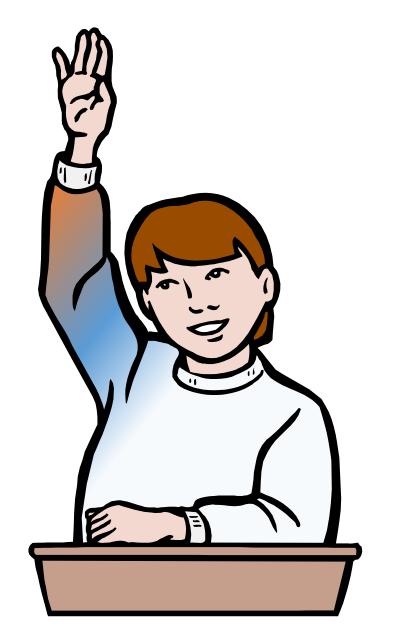
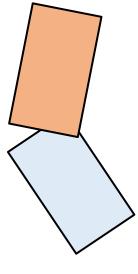
CS418 Interactive Computer Graphics
John C. Hart

Modeling Posed Shapes from Bones



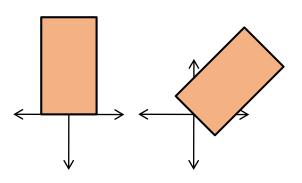




"bones" are coordinate frames

 $R(\theta_2)$

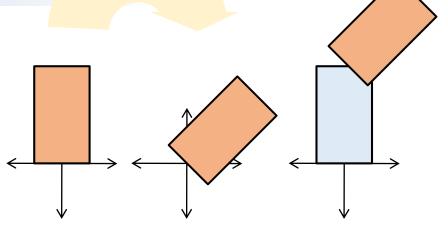
• $R(\theta_2)$ rotates forearm cylinder about its elbow at the origin



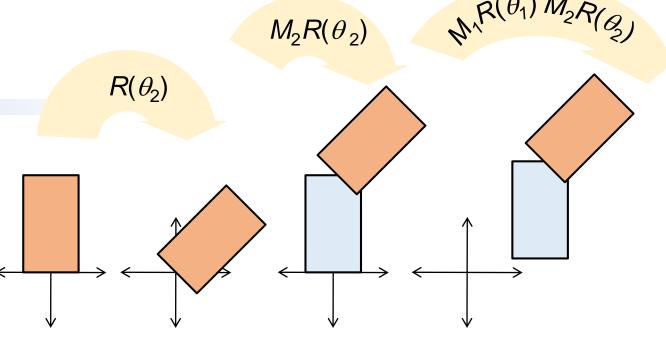
 $M_2R(\theta_2)$

 $R(\theta_2)$

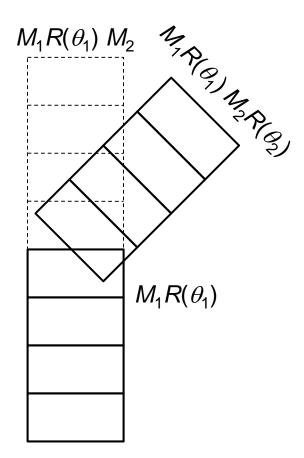
- $R(\theta_2)$ rotates forearm cylinder about its elbow at the origin
- M_2 moves forearm elbow from the origin to the end of the upper-arm cylinder when its shoulder is based at the origin



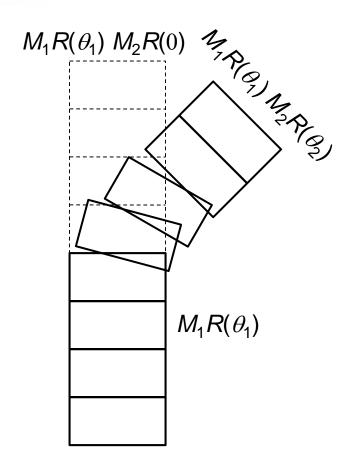
- $R(\theta_2)$ rotates forearm cylinder about its elbow at the origin
- M_2 moves forearm elbow from the origin to the end of the upper-arm cylinder when its shoulder is based at the origin
- $R(\theta_1)$ rotates upper-arm cylinder about its shoulder at the origin
- M_1 moves upper-arm cylinder from the origin to its position in world coordinates



- $R(\theta_2)$ rotates forearm cylinder about its elbow at the origin
- M_2 moves forearm elbow from the origin to the end of the upper-arm cylinder when its shoulder is based at the origin
- $R(\theta_1)$ rotates upper-arm cylinder about its shoulder at the origin
- M_1 moves upper-arm cylinder from the origin to its position in world coordinates

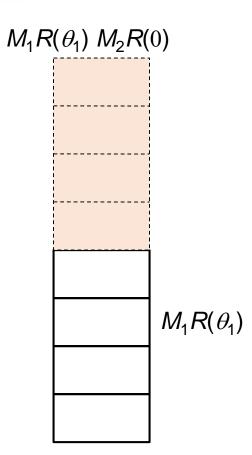


Solution: interpolate matrices from straight coordinate frame into the correctly oriented coordinate frame per-vertex



Solution: interpolate matrices from straight coordinate frame into the correctly oriented coordinate frame per-vertex

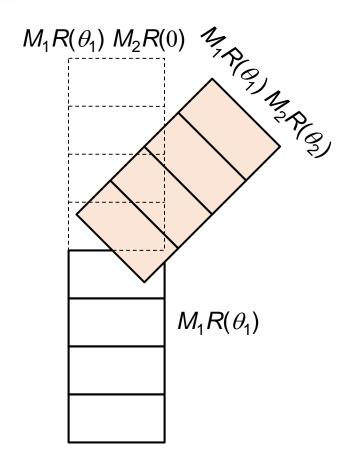
$$M_{\text{straight}} = M_1 R(\theta_1) M_2 R(0)$$



Solution: interpolate matrices from straight coordinate frame into the correctly oriented coordinate frame per-vertex

$$M_{\text{straight}} = M_1 R(\theta_1) M_2 R(0)$$

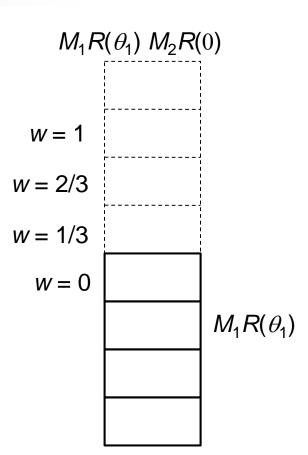
$$M_{\text{bent}} = M_1 R(\theta_1) M_2 R(\theta_2)$$



Solution: interpolate matrices from straight coordinate frame into the correctly oriented coordinate frame per-vertex

$$M_{\text{straight}} = M_1 R(\theta_1) M_2 R(0)$$
$$M_{\text{bent}} = M_1 R(\theta_1) M_2 R(\theta_2)$$

- Distribute ("paint") weights w on vertices of forearm cylinder
 - w = 0 at elbow end
 - w = 1 after elbow

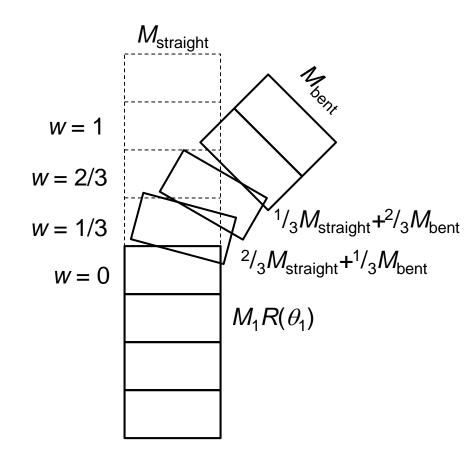


Solution: interpolate matrices from straight coordinate frame into the correctly oriented coordinate frame per-vertex

$$M_{\text{straight}} = M_1 R(\theta_1) M_2 R(0)$$
$$M_{\text{bent}} = M_1 R(\theta_1) M_2 R(\theta_2)$$

- Distribute ("paint") weights w on elements of forearm cylinder
 - w = 0 at elbow end
 - w = 1 after elbow
- Transform elements using

$$M(w) = (1 - w) M_{\text{straight}} + w M_{\text{bent}}$$

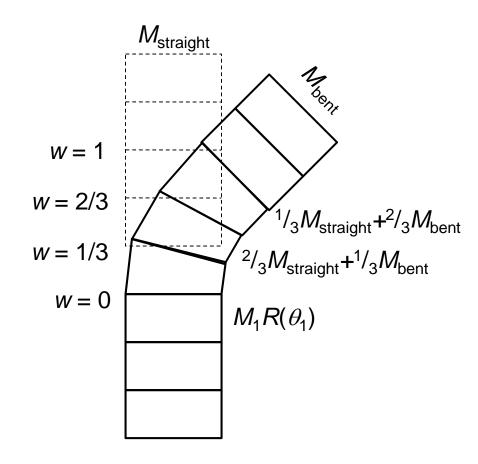


Solution: interpolate matrices from straight coordinate frame into the correctly oriented coordinate frame per-vertex

$$M_{\text{straight}} = M_1 R(\theta_1) M_2 R(0)$$
$$M_{\text{bent}} = M_1 R(\theta_1) M_2 R(\theta_2)$$

- Distribute ("paint") weights w on **vertices** of forearm cylinder
 - w = 0 at elbow end
 - w = 1 after elbow
- Transform vertices using

$$M(w) = (1 - w) M_{\text{straight}} + w M_{\text{bent}}$$



Interpolating Matrices

- Skinning interpolates matrices by interpolating their elements
- Identical to interpolating vertex positions after transformation
- We've already seen problems with interpolating rotation matrices
- Works well enough for rotations with small angles
- Rotations with large angles needs additional processing (e.g. polar decomposition)
- Quaternions provide a better way to interpolate rotations...



$$(aA + bB)p = a(Ap) + b(Bp)$$

a,b = weights A,B = matrices p = vertex position

From: J. P. Lewis, Matt Cordner, and Nickson Fong. "Pose space deformation: a unified approach to shape interpolation and skeletondriven deformation." Proc. SIGGRAPH 2000